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Introduction
Colorectal cancer (CRC) is one of the major causes of cancer 
death worldwide, ranking third in incidence and second in mortal-
ity among cancers. Over 1.9 million new colorectal cancer cases 
and 935,000 deaths were estimated to occur in 2020, accounting 

for about one-tenth of cancer cases and deaths.1 Despite progress 
in methodology for cancer screening and diagnosis, around half of 
CRC cases are diagnosed at late stages, for which few treatment 
options are available.2,3 Thus, the search for targeted therapy for 
managing the disease, both in early and advanced CRC, is needed.

CRC is a heterogeneous disease that develops through several 
molecular pathways.4 The chromosomal instability (CIN) pathway 
involves multi-step mutational activation of oncogenes or inac-
tivation of tumor suppressor genes that drive the transition from 
normal mucosa to adenoma to carcinoma.5,6 CIN tumors are char-
acterized by several mutations in tumor suppressor genes (APC, 
TP53) or oncogenes (KRAS, PIK3CA) that activate molecular 
pathways leading to the initiation and progression of CRC.7

The most frequently altered RAS proto-oncogene in human tu-
mors is the KRAS, originally identified as retroviral oncogenes in 
rat sarcoma viruses.8,9 KRAS is located on chromosome 12p12.1, 
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Conclusions: This study characterizes KRAS mutations in Filipino patients with CRC, suggesting a possible difference in their 
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and comprises six exons, including one non-coding exon (exon 0) 
and five coding exons (exon 1 to 4A/4B), of which exon 4 has two 
different forms, directing the synthesis of two mRNAs via alterna-
tive splicing. KRAS encodes a small 21 kDa protein (p21 ras) in-
volved in G protein-mediated signal transduction.10 RAS proteins 
control cellular signaling pathways responsible for growth, migra-
tion, adhesion, cytoskeletal integrity, survival, and differentiation. 
RAS proteins belong to the large family of small GTPases, which 
are master regulators of a myriad of signaling cascades involved in 
highly diverse cellular processes.11

In CRC, multiple studies showed the frequency of KRAS gene 
mutation for more than 30% of all CRC cases, with the most com-
mon mutations occurring in hotspots codons 12 and 13 and less 
commonly in codon 61.12 The most common KRAS gene point mu-
tation is at glycine at position 12 (G12), followed by glycine at po-
sition 13 (G13), and glutamine at position 61 (Q61).12 These mu-
tations have been correlated with clinical outcomes, particularly 
poor prognosis and shorter overall survival.13–16 Furthermore, the 
KRAS mutational status directs treatment choices. KRAS mutations 
may lead to tumor resistance to cell surface receptor tyrosine ki-
nase inhibitors as well as EGFR-targeted monoclonal antibodies.2

In contrast with the higher frequency of KRAS mutation re-
ported in Western countries, a lower frequency has been noted in 
some Asian cases such as Taiwanese-Chinese (26.5%) and Japa-
nese (23%) patients.17,18 However, very limited data have been 
presented on the mutational analysis of KRAS in Southeast Asian 
populations. This study aimed to characterize KRAS mutations in 
CRC tissues from Filipino patients. The results of this study would 
be significant, adding information to the limited data and under-
standing of the association of KRAS mutation with CRC clinical 
and tumor characteristics.

Materials and methods

Samples
Paired frozen normal and tumor tissues from the 35 previously 
identified CRC patients who underwent surgical resection at St. 
Luke’s Medical Center (SLMC) in Manila, Philippines, were used 
in the study. Patients from whom these samples were obtained 
agreed to participate in the study by signing consent forms. Per-
tinent data such as gender, age, and family history of CRC were 
obtained. This project was approved by the Institutional Scientific 
Review Board and Institutional Ethics Review Board of SLMC, 
no. 99-006. Tumor and normal samples were stored in a −80 °C 
biofreezer.

DNA extraction and quantification
DNA extraction was carried out according to the manufacturer’s 

instructions (QIAamp DNA Mini Kit, Qiagen). In summary, a ly-
sis solution containing proteinase K was used to disrupt the cell 
membrane and release DNA. DNA was precipitated with ethanol 
and washed with wash buffers to remove residual contaminants 
from the isolated genomic DNA (gDNA). The purified gDNA was 
eluted from the column and consequently used for mutation analy-
sis. DNA quantity and quality were assessed by spectrophotometry 
(Nanodrop® v.1000, Thermo Fisher Scientific). DNA yield and 
purity were determined based on the concentration of DNA in the 
eluate measured by absorbance at 260nm/280nm. Pure DNA typi-
cally has an absorbance at A260/A280 ratio of 1.7–1.9.

Polymerase chain reaction (PCR) of KRAS gene
KRAS gene was detected by PCR performed on a 96-well plate 
palm cycler (Corbett). A reaction mixture of 25 µL consisted of 
0.05 U/µL Taq polymerase and PCR reaction buffer (Taq PCR 
Core Kit, Qiagen), 2 mM MgCl2, 0.25 mM dNTP, and 0.10 µM 
of each primer. The PCR conditions were set as follows: one cycle 
of 94°C for 5 m; 35 cycles of 94°C for 45 s, 56°C for 45 s, 72°C 
for 45 s, and one cycle of 72°C for 7 m. The primer sequences 
used were based on previously published sequences in the National 
Center for Biotechnology Information GenBank with accession 
numbers: L0005, L0006, L0007, L0008, and L0009. The primer 
sequences of the KRAS gene are shown in Table 1. To confirm, 
the PCR product was electrophoresed on a 2% agarose gel and 
consequently stained with ethidium bromide. The stained gel was 
viewed under a UV (Ultraviolet) transilluminator (BioRad).

Denaturing high-performance liquid chromatography (DH-
PLC)
PCR products were screened for mutations in all exons of the KRAS 
gene using DHPLC (Helix™ System, Varian, Inc.). DHPLC iden-
tifies mutations and polymorphisms by detecting heteroduplexes 
that contain mismatched nucleotides, formed from two PCR prod-
ucts. Sequence variation creates a mixed population of homodu-
plexes and heteroduplexes when wild-type and mutant DNA are 
denatured and reannealed. A mix of approximately equal ratios of 
normal and tumor DNA amplicons required post-PCR processing 
to create partially denatured DNA strands. Amplified PCR frag-
ments were denatured at 95°C for 5 m before being allowed to 
reanneal by gradually lowering the temperature from 95°C to 65°C 
in about 1 m. Initial column temperatures (Ti) for each of the five 
exons were calculated using the DHPLC Melt Program available 
on the Stanford DHPLC website (http://insertion.stanford.edu/
meltdoc.html).

Prior to running the samples, an evaluation of the system per-
formance with pUC18 HaeIII (Sigma-Aldrich) digest was under-
taken in a non-denatured condition at 50 °C. The resolution of the 
257 and 267 base pair (bp) peaks indicated adequate performance 

Table 1.  Primer sequences and annealing temperatures used to amplify the entire coding region of the KRAS gene and the size of PCR products

Exon Sequence (5′-3′) F Sequence (5′-3′) R bp Optimum DHPLC (Tm)

1 ATGACTGAATATAAACTTGT TCCACAAAATGATTCTGAAT 90

2 GACTGTGTTTCTCCCTTCT GGCAAATACACAAAGAAAG 161 60

3 GGTGTAGTGGAAACTAGGAATTAC GACATAACAGTTATGATTTTGCAG 344 56

4a CTCAAGCTCATAATCTCAAACTTCT GTAGTTCTAAAGTGGTTGCCACC 305 58

4b GACAAAACACCTATGCGGATGA GCTAACAGTCTGCATGGAGCA 429 54

bp, base pair; DHPLC, denaturing high-performance liquid chromatography; PCR, polymerase chain reaction; Tm, melting temperature.
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to run the samples. A triplicate injection of 2 µL was performed for 
each sample. Results were presented as a chromatogram, a series 
of peaks corresponding to the DNA fragments. Separation of DNA 
fragments by size was achieved by differential absorption or parti-
tion between the liquid (mobile) phase and the matrix (stationary 
phase) of the column. DNA fragments were detected by UV ab-
sorbance at 260 nm, and sample analysis lasted for 10 m.

DNA sequencing
PCR amplicons found to have variations in DHPLC elution pro-
files attributable to sequence changes, along with their corre-
sponding normal DNA samples, were purified using a DNA Gel 
Extraction Spin Column (BioRad). The purified DNA was sent to 
Microgen (Seoul, Korea) for DNA sequencing (ABI 3730xl, ABI 
Prism). Additionally, five tumor samples with single peaks (nor-
mal elution profiles) were also sequenced. The DNA sequences 
obtained were aligned and comparing with sequences from the da-
tabases of the National Center for Biotechnology Information. A 
consensus sequence per sample in each exon was obtained using 
the downloadable free software BioEdit (http://www.mbio.ncsu.
edu/BioEdit/bioedit.html). Chromatograms of the sequenced DNA 
were analyzed for mutations or sequence variations using DNAsis 
software (Hitachi Software Engineering Co., Ltd.).

Statistical analysis
Statistical analysis was calculated using GraphPrism version 5.01 
(GraphPad Software, Inc.). Associations between clinicopatholog-
ical characteristics (age, sex, tumor location, grade, and stage) and 
KRAS mutation status were determined using either Pearson’s chi-
square test or Fisher’s exact test, depending on which was more 
appropriate. Survival relevance was analyzed using Kaplan-Meier 
curves and the log-rank test, with grouping based on KRAS muta-
tion status. All tests were two-tailed, and significance was consid-
ered at a p-value of less than 0.05.

Results

CRC patient distribution
This study included 35 CRC patients of Filipino descent, compris-
ing nineteen (54%) males and sixteen (46%) females with ages 
ranging from 34 to 77 years and a mean age of 60. Seventeen 
(49%) patients belonged to the age group younger than 60 years 
old, while eighteen (51%) were 60 years and above. Based on tu-
mor node metastasis (TNM) staging, four (11%) were in stage I, 
twelve (34%) were in stage II, fourteen (40%) were in stage III, 
and five (14%) were in stage IV. Regarding tumor histological 
differentiation, three (9%) were poorly differentiated, twenty-six 

(74%) were moderately differentiated, four (11%) were well dif-
ferentiated, and two (6%) were of the mucinous type. Based on 
tumor location, seventeen (49%) were in the distal region (splen-
ic flexure through the sigmoid, including the rectosigmoid), ten 
(29%) were in the proximal region (cecum through the transverse 
colon), and eight (23%) were in the rectum. No differences were 
noted between males and females for all parameters analyzed.

Detection of aberrant KRAS of CRC patients through DHPLC
Following PCR amplification of all five exons of the KRAS gene, 
paired normal and tumor DNA samples from all 35 CRC patients 
were screened using DHPLC. The data showed seventeen sam-
ples (49%) with aberrant chromatograms, comprising five samples 
(14%) for exon 2, one (3%) for exon 3, two (6%) for exon 4A, and 
nine (26%) for exon 4B. Mutation screening was not conducted for 
exon 1 due to its small product size (89 bp). DHPLC instrument 
can only detect PCR fragment sizes ranging from 150 to 500 bp. 
Multiple peaks in chromatogram outputs were observed in exon 
2 and exon 4B from the DHPLC data. Consequently, all samples 
with aberrant chromatograms were analyzed by DNA sequencing.

Presence of KRAS mutation in CRC tissues detected through 
DHPLC and DNA sequencing
Seventeen tumor DNA samples that exhibited aberrant chromato-
gram profiles in DHPLC were further analyzed by sequencing. Ad-
ditionally, all purified PCR products for exon 1 were sequenced. 
As controls, five of the tumor samples with single peak (normal) 
chromatogram profiles were also sequenced to validate the sen-
sitivity of the screening method used. The results of these single 
peak samples did not show any base changes in their DNA se-
quence. Table 2 shows the results of tumor samples analyzed by 
both DHPLC and sequencing. The frequency of KRAS mutations 
in exon 3 and exon 4A by DHPLC and sequencing were 3% (1/35) 
and 6% (2/35), respectively. For exon 2, they were 14% (5/35) by 
DHPLC and 9% (3/35) by sequencing. All tumor samples posi-
tive for mutation in exon 2 by sequencing were found to have mu-
tations in DHPLC. The proportion of CRC samples positive for 
exon 4B by DHPLC was 26% (9/35), while only 17% (6/35) were 
positive for exon 4B by sequencing. Similar to exon 2, all exon 4B 
positive for sequencing were found to have mutations by DHPLC.

Table 3 shows a total of twenty (57%) KRAS mutations ob-
served in eighteen (51%) of the 35 patients. Among all mutations, 
eleven mutations (55%) were noticed in exon 1 as follows: One in 
codon 13 (GGC→TGC; G13C), four in codon 19 (TTG→TGG; 
L19W), five in codon 23 (CTA→CTG; L23, silent mutation), and 
one in codon 11 (insertion C, A11R, frameshift mutation). In exon 
2, three (15%) samples had mutations in codon 54 (GAT→CAT, 
D54H). In exon 4B, six (30%) samples had mutations in codon 173 

Table 2.  Frequency of samples/exons positive for mutation in DHPLC and sequencing

Exon
DHPLC Sequencing

Mutant (%) Wild type (%) mutant (%) Wild type (%)

2 5 (14) 30 (86) 3 (9) 32 (91)

3 1 (3) 34 (97) 0 (0) 35 (100)

4A 2 (6) 33 (94) 0 (0) 35 (100)

4B 9 (26) 26 (74) 6 (17) 29 (83)

total 17 (49) 18 (51) 9 (26) 26 (74)

DHPLC, denaturing high-performance liquid chromatography.
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(GAT→GAC; D173, silent mutation).

Association of KRAS mutation and tumor characteristics
Table 4 presents the correlation between KRAS mutations (possi-
ble pathogenic mutations) and the clinical characteristics of the 
patients. Among nine cases with these pathogenic mutations, six 
(67%) were female, while only three (33%) were male. Regard-
ing age, three (33%) were observed in CRC patients younger 
than 60 years old, while six (67%) were 60 years old and above. 
Mutations were predominantly found in moderately differenti-
ated tumors (67%), with similar frequencies in poorly differenti-
ated (11%), well-differentiated (11%), and mucinous type (11%) 
tumors. Based on location or site, more mutations were found in 
the proximal region (56%) than in the distal (33%) and rectum of 

the large intestine (11%). KRAS mutations were significantly more 
prevalent in TNM stage III tumors (89%) than in stage II (11%), 
while there were no mutations observed in stage I and IV samples 
(p = 0.007, Chi-square test). Overall, except for TNM stage, there 
was no significant association between KRAS mutations and the 
clinical characteristics of the patients.

Association between KRAS mutation and CRC patient progno-
sis

Kaplan-Meier curve and log-rank test were performed to deter-
mine the prognostic values of KRAS mutations to the patient’s 
overall survival. Twenty-six patients were followed for 60 months 
post-surgery, the timing defined as the cut-off for survival. The 

Table 3.  Sequencing analysis of KRAS gene

Codon Nucleotide change Amino acid change Consequence n (%)

11 Ins-C A11R Frameshift mutation; possible pathogenic mutation 1 (5%)

13 GGC→TGC G13C Missense mutation; possible pathogenic mutation 1 (5%)

19 TTG→TGG L19W Missense mutation; Possible pathogenic mutation 4 (20%)

23 CTA→CTG L23 Silent mutation 5 (25%)

54 GAT→CAT D54H Missense mutation; possible pathogenic mutation 3 (15%)

173 GAT→GAC D173 Silent mutation 6 (30%)

Table 4.  Correlation of possible pathogenic KRAS mutation with clinicopathological characteristic

Variables Freq
Mutations No mutations Total

X2 p
n (%) n (%) n (%)

Sex Male 3 (33) 16 (61) 19 (54) 0.245

Female 6 (67) 10 (39) 16 (46)

Total 9 (100) 26 (100) 35 (100)

Age < 60 3 (33) 16 (61) 19 (54) 0.245

≥ 60 6 (67) 10 (39) 16 (46)

Total 9 (100) 26 (100) 35 (100)

TNM stage I 0 (0) 4 (15) 4 (12) 12.252 0.007

II 1 (11) 11 (42) 12 (34)

III 8 (89) 6 (23) 14 (40)

IV 0 (0) 5 (19) 5 (14)

Total 9 (100) 26 (100) 35 (100)

Tumor grade Poor 1 (11) 1 (4) 2 (6) 1.677 0.795

Moderate 6 (67) 20 (77) 26 (74)

Well 1 (11) 3 (11) 4 (11)

Mucinous 1 (11) 2 (8) 3 (9)

Total 9 (100) 26 (100) 35 (100)

Location Proximal 5 (56) 5 (19) 10 (29) 4.637 0.098

Distal 3 (33) 12 (46) 15 (42)

Rectum 1 (11) 9 (35) 10 (29)

Total 9 (100) 26 (100) 35 (100)

TNM, tumor node metastasis.
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Kaplan-Meier curve analysis revealed no significant difference in 
patient survival, with the median values of survival of 27.5-month 
vs 24.0-month for KRAS mutation and no mutation group, respec-
tively (Fig. 1).

Discussion
Mutations activating the KRAS gene are considered a key step in 
the progression from normal colorectal epithelium to carcinoma. 
These mutations may lead to increased proliferation of CRC cells, 
and in combination with other mutations (e.g., APC) can promote 
tumorigenesis.19 In fact, RAS is one of the most known proto-on-
cogenes, with its mutation occurring in around 30% of all human 
cancers.20

In the present study, we screened and analyzed the entire five 
coding regions of the KRAS gene for mutations using DHPLC and 
direct DNA sequencing. DHPLC is an accurate, sensitive, and ef-
ficient screening technique used for distinguishing the variation in 
DNA sequence changes by heteroduplex analysis,21 making it suit-
able for detecting single nucleotide substitution or single nucleo-
tide polymorphism. This technology has been used for mutation 
screening in genes causing diseases such as BRCA1 and BRCA1 
genes in breast cancer,22,23 CFTR gene in cystic fibrosis,24,25 RB1 
gene in hereditary retinoblastoma,26 and BRAF (V600E) in papil-
lary thyroid carcinoma.27 DHPLC presented better sensitivity than 
single-strand conformation polymorphism, with a range of about 
92.5 to 100%, in the mutation screening of genetically heterogene-
ous diseases, such as Charcot-Marie-Tooth neuropathy.28 Several 
studies have used DHPLC to verify KRAS mutations determined 
by high-resolution melt analysis or direct sequencing.29,30

Nine mutations were identified (Table 3), dictating changes in 
amino acid and consequently altering the protein product, which 
may be considered pathogenic. All these mutations were located 
in the conserved region of the KRAS gene which carried the most 
important information responsible for the correct functioning of 
the protein.31 Point mutations in this conserved region block the 
GTPase activity, leading to constitutively active and oncogenic 
proteins.32

Eight of nine mutations reported in this paper were found out-
side the hotspot codons. Among these, five resulted in a non-con-
servative amino acid substitution (e.g., replacement of an amino 

acid by another with different chemical properties) at residues 
most likely essential for the functioning of the protein.33 Only one 
out of nine mutations reported in this paper occurred in the hotspot 
of KRAS gene (codon 13). A base substitution (G – T) in codon 13 
of exon 1 brought about an amino acid change from Glycine to 
Cysteine (G13C). This mutation has been noticed in a small per-
centage of CRC patients in North Africa and the Chinese popula-
tion.34,35

Mutation L19W of exon 1 was found in four patients. A silent 
mutation codon 19 was previously reported in a CRC group of 
Dutch patients.36 It was demonstrated that a single point muta-
tion within the coding sequences has a transforming effect on the 
KRAS gene.37 Meanwhile, a silent mutation in codon 173 of exon 
4B (GAT→GAC) was noticed in six patients. This silent polymor-
phism was also seen in a group of Dutch individuals.33 Interest-
ingly, in this study, we found a novel point mutation in three CRC 
patients. This missense mutation in codon 54 in exon 2 resulted in 
an amino acid change from aspartic acid to histidine (D54H).

From statistical analysis, a significant association was noticed be-
tween the presence of KRAS mutation and tumor stage. KRAS muta-
tions were more frequent in stage III tumors with regional lymph 
node metastases, with eight of the nine cases having potentially 
pathogenic mutations. However, this finding needs further valida-
tion. Our data are in agreement with the previous study indicating 
that KRAS mutations were significantly more common in advanced-
stage tumors.38 No significant associations were found between 
overall KRAS mutations and clinical characteristics of patients such 
as gender, age, tumor differentiation, and tumor site, in accordance 
with previous studies.35,39 There was also no association between 
mutations and overall patient survival. However, although not sta-
tistically significant, more male than female patients had KRAS mu-
tation, and the most commonly affected site was the distal colon. 
However, in future works, the number of analyzed samples must be 
increased to indicate a better correlation between findings.

A recent study from the Philippines showed that using next-
generation sequencing, mutations were reported in KRAS gene at 
codon 12 (G12S) and codon 59 (A59T) in Filipinos CRC patients, 
together with a novel mutation in codon 137 (Y137C). In the in 
vitro model, these mutations induced gross changes in F-actin cy-
toskeletal organization and cellular morphology of the cells.40

Future perspectives
The overall survival is maximized when the highest standards of 
patient care are provided through a multidisciplinary team.41 Thus, 
information from gene mutation screening in CRC patients could 
be useful to guide a multidisciplinary team in delivering optimal 
results in the standard-of-care. It is important to note that this study 
was limited to screening for KRAS mutations. It could be useful 
to determine the association of the reported RAS gene mutations 
in this study with RAF (BRAF) mutation status to better identify 
possible RAS/RAF associations in CRC.42 Techniques like whole 
exome sequencing should also be considered to characterize the 
mutation frequency of the protein-coding region of interest. De-
spite being conducted with a limited number of patients, this report 
provides valuable information on the diverse genetic profiling of 
KRAS mutations in Filipino CRC patients, which could be useful 
for the treatment and knowledge of the disease.

Conclusions
This study was able to observe that Filipino CRC patients do 

Fig. 1. KRAS mutational analysis for patients’ prognosis. Kaplan-Meier 
analysis of colorectal cancer patients’ overall survival 60 months after sur-
gery. m, months; ns, not significant; p, p-value.
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not show variation in the highly reported KRAS codon 12 and 13 
hotspot mutations. The presence of KRAS mutation is associated 
with stage III tumors. This study also successfully demonstrated 
a novel KRAS mutation, D54H, resulting from DHPLC and DNA 
sequencing analysis. Such evidence, promote the use of denaturing 
high-performance liquid chromatography, for mutational screen-
ing which may help increase reports of gene mutational profiles 
in Southeast Asian populations. This study is one of the first few 
reports on the mutational status of KRAS in Filipino CRC patients, 
possibly defining a different KRAS mutation profile of Southeast 
Asian/Filipino populations.
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